Hunan Province
A Causal Adjustment Module for Debiasing Scene Graph Generation
Liu, Li, Sun, Shuzhou, Zhi, Shuaifeng, Shi, Fan, Liu, Zhen, Heikkilä, Janne, Liu, Yongxiang
While recent debiasing methods for Scene Graph Generation (SGG) have shown impressive performance, these efforts often attribute model bias solely to the long-tail distribution of relationships, overlooking the more profound causes stemming from skewed object and object pair distributions. In this paper, we employ causal inference techniques to model the causality among these observed skewed distributions. Our insight lies in the ability of causal inference to capture the unobservable causal effects between complex distributions, which is crucial for tracing the roots of model bias. Specifically, we introduce the Mediator-based Causal Chain Model (MCCM), which, in addition to modeling causality among objects, object pairs, and relationships, incorporates mediator variables, i.e., cooccurrence distribution, for complementing the causality. Following this, we propose the Causal Adjustment Module (CAModule) to estimate the modeled causal structure, using variables from MCCM as inputs to produce a set of adjustment factors aimed at correcting biased model predictions. Moreover, our method enables the composition of zero-shot relationships, thereby enhancing the model's ability to recognize such relationships. Experiments conducted across various SGG backbones and popular benchmarks demonstrate that CAModule achieves state-of-the-art mean recall rates, with significant improvements also observed on the challenging zero-shot recall rate metric.
A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling
Zhong, Xin, Ling, Weiwei, Pan, Kejia, Wu, Pinxia, Zhang, Jiajing, Zhan, Zhiliang, Xiao, Wenbo
Traditional three-dimensional magnetotelluric (MT) numerical forward modeling methods, such as the finite element method (FEM) and finite volume method (FVM), suffer from high computational costs and low efficiency due to limitations in mesh refinement and computational resources. We propose a novel neural network architecture named MTAGU-Net, which integrates an attention gating mechanism for 3D MT forward modeling. Specifically, a dual-path attention gating module is designed based on forward response data images and embedded in the skip connections between the encoder and decoder. This module enables the fusion of critical anomaly information from shallow feature maps during the decoding of deep feature maps, significantly enhancing the network's capability to extract features from anomalous regions. Furthermore, we introduce a synthetic model generation method utilizing 3D Gaussian random field (GRF), which accurately replicates the electrical structures of real-world geological scenarios with high fidelity. Numerical experiments demonstrate that MTAGU-Net outperforms conventional 3D U-Net in terms of convergence stability and prediction accuracy, with the structural similarity index (SSIM) of the forward response data consistently exceeding 0.98. Moreover, the network can accurately predict forward response data on previously unseen datasets models, demonstrating its strong generalization ability and validating the feasibility and effectiveness of this method in practical applications.
PTMs-TSCIL Pre-Trained Models Based Class-Incremental Learning
Wu, Yuanlong, Nie, Mingxing, Zhu, Tao, Chen, Liming, Ning, Huansheng, Wan, Yaping
Class-incremental learning (CIL) for time series data faces critical challenges in balancing stability against catastrophic forgetting and plasticity for new knowledge acquisition, particularly under real-world constraints where historical data access is restricted. While pre-trained models (PTMs) have shown promise in CIL for vision and NLP domains, their potential in time series class-incremental learning (TSCIL) remains underexplored due to the scarcity of large-scale time series pre-trained models. Prompted by the recent emergence of large-scale pre-trained models (PTMs) for time series data, we present the first exploration of PTM-based Time Series Class-Incremental Learning (TSCIL). Our approach leverages frozen PTM backbones coupled with incrementally tuning the shared adapter, preserving generalization capabilities while mitigating feature drift through knowledge distillation. Furthermore, we introduce a Feature Drift Compensation Network (DCN), designed with a novel two-stage training strategy to precisely model feature space transformations across incremental tasks. This allows for accurate projection of old class prototypes into the new feature space. By employing DCN-corrected prototypes, we effectively enhance the unified classifier retraining, mitigating model feature drift and alleviating catastrophic forgetting. Extensive experiments on five real-world datasets demonstrate state-of-the-art performance, with our method yielding final accuracy gains of 1.4%-6.1% across all datasets compared to existing PTM-based approaches. Our work establishes a new paradigm for TSCIL, providing insights into stability-plasticity optimization for continual learning systems.
Attention-based UAV Trajectory Optimization for Wireless Power Transfer-assisted IoT Systems
Dong, Li, Jiang, Feibo, Peng, Yubo
--Unmanned Aerial V ehicles (UA Vs) in Wireless Power Transfer (WPT)-assisted Internet of Things (IoT) systems face the following challenges: limited resources and suboptimal trajectory planning. Reinforcement learning-based trajectory planning schemes face issues of low search efficiency and learning instability when optimizing large-scale systems. T o address these issues, we present an Attention-based UA V Trajectory Optimization (AUTO) framework based on the graph transformer, which consists of an Attention Trajectory Optimization Model (A TOM) and a Trajectory lEarNing Method based on Actor-critic (TENMA). In A TOM, a graph encoder is used to calculate the self-attention characteristics of all IoTDs, and a trajectory decoder is developed to optimize the number and trajectories of UA Vs. TENMA then trains the A TOM using an improved Actor-Critic method, in which the real reward of the system is applied as the baseline to reduce variances in the critic network. This method is suitable for high-quality and large-scale multi-UA V trajectory planning. Finally, we develop numerous experiments, including a hardware experiment in the field case, to verify the feasibility and efficiency of the AUTO framework. I NTRODUCTION With the advancement of 5G, the Internet of Things (IoT) has become widely used in a variety of fields, including environmental monitoring, healthcare, and industry 4.0, among others. However, due to limited transmitting power and battery capacity, Internet of Things Devices (IoTDs) perform poorly in long-distance communication.
TastepepAI, An artificial intelligence platform for taste peptide de novo design
Yue, Jianda, Li, Tingting, Ouyang, Jian, Xu, Jiawei, Tan, Hua, Chen, Zihui, Han, Changsheng, Li, Huanyu, Liang, Songping, Liu, Zhonghua, Liu, Zhonghua, Wang, Ying
Taste peptides have emerged as promising natural flavoring agents attributed to their unique organoleptic properties, high safety profile, and potential health benefits. However, the de novo identification of taste peptides derived from animal, plant, or microbial sources remains a time-consuming and resource-intensive process, significantly impeding their widespread application in the food industry. Here, we present TastePepAI, a comprehensive artificial intelligence framework for customized taste peptide design and safety assessment. As the key element of this framework, a loss-supervised adaptive variational autoencoder (LA-VAE) is implemented to efficiently optimizes the latent representation of sequences during training and facilitates the generation of target peptides with desired taste profiles. Notably, our model incorporates a novel taste-avoidance mechanism, allowing for selective flavor exclusion. Subsequently, our in-house developed toxicity prediction algorithm (SpepToxPred) is integrated in the framework to undergo rigorous safety evaluation of generated peptides. Using this integrated platform, we successfully identified 73 peptides exhibiting sweet, salty, and umami, significantly expanding the current repertoire of taste peptides. This work demonstrates the potential of TastePepAI in accelerating taste peptide discovery for food applications and provides a versatile framework adaptable to broader peptide engineering challenges.
Learning Accurate, Efficient, and Interpretable MLPs on Multiplex Graphs via Node-wise Multi-View Ensemble Distillation
Liu, Yunhui, Tao, Zhen, Zhao, Xiang, Zhao, Jianhua, Zheng, Tao, He, Tieke
Multiplex graphs, with multiple edge types (graph views) among common nodes, provide richer structural semantics and better modeling capabilities. Multiplex Graph Neural Networks (MGNNs), typically comprising view-specific GNNs and a multi-view integration layer, have achieved advanced performance in various downstream tasks. However, their reliance on neighborhood aggregation poses challenges for deployment in latency-sensitive applications. Motivated by recent GNNto-MLP knowledge distillation frameworks, we propose Multiplex Graph-Free Neural Networks (MGFNN and MGFNN+) to combine MGNNs' superior performance and MLPs' efficient inference via knowledge distillation. MGFNN directly trains student MLPs with node features as input and soft labels from teacher MGNNs as targets. MGFNN+ further employs a low-rank approximation-based reparameterization to learn node-wise coefficients, enabling adaptive knowledge ensemble from each view-specific GNN. This node-wise multi-view ensemble distillation strategy allows student MLPs to learn more informative multiplex semantic knowledge for different nodes. Experiments show that MGFNNs achieve average accuracy improvements of about 10% over vanilla MLPs and perform comparably or even better to teacher MGNNs (accurate); MGFNNs achieve a 35.40 -89.14 speedup in inference over MGNNs (efficient); MGFNN+ adaptively assigns different coefficients for multi-view ensemble distillation regarding different nodes (interpretable).
Diff9D: Diffusion-Based Domain-Generalized Category-Level 9-DoF Object Pose Estimation
Liu, Jian, Sun, Wei, Yang, Hui, Deng, Pengchao, Liu, Chongpei, Sebe, Nicu, Rahmani, Hossein, Mian, Ajmal
Nine-degrees-of-freedom (9-DoF) object pose and size estimation is crucial for enabling augmented reality and robotic manipulation. Category-level methods have received extensive research attention due to their potential for generalization to intra-class unknown objects. However, these methods require manual collection and labeling of large-scale real-world training data. To address this problem, we introduce a diffusion-based paradigm for domain-generalized category-level 9-DoF object pose estimation. Our motivation is to leverage the latent generalization ability of the diffusion model to address the domain generalization challenge in object pose estimation. This entails training the model exclusively on rendered synthetic data to achieve generalization to real-world scenes. We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective. Our model does not require any 3D shape priors during training or inference. By employing the Denoising Diffusion Implicit Model, we demonstrate that the reverse diffusion process can be executed in as few as 3 steps, achieving near real-time performance. Finally, we design a robotic grasping system comprising both hardware and software components. Through comprehensive experiments on two benchmark datasets and the real-world robotic system, we show that our method achieves state-of-the-art domain generalization performance. Our code will be made public at https://github.com/CNJianLiu/Diff9D.
PSSD: Making Large Language Models Self-denial via Human Psyche Structure
Liao, Jinzhi, Liao, Zenghua, Zhao, Xiang
The enhance of accuracy in reasoning results of LLMs arouses the community's interests, wherein pioneering studies investigate post-hoc strategies to rectify potential mistakes. Despite extensive efforts, they are all stuck in a state of resource competition demanding significant time and computing expenses. The cause of the situation lies in the failure of identifying the fundamental feature of the solutions in this line, coined as the self-denial of LLMs. In other words, LLMs should confidently determine the potential existence of mistakes and carefully execute the targeted correction. As the whole procedure conducts within LLMs, supporting and persuasive references are hard to acquire, while the absence of specific steps towards refining hidden mistakes persists even when errors are acknowledged. In response to the challenges, we present PSSD, which refers to and implements the human psyche structure such that three distinct and interconnected roles contribute to human reasoning. Specifically, PSSD leverages the recent multi-agent paradigm, and is further enhanced with three innovatively conceived roles: (1) the intuition-based id role that provides initial attempts based on benign LLMs; (2) the rule-driven superego role that summarizes rules to regulate the above attempts, and returns specific key points as guidance; and (3) the script-centric ego role that absorbs all procedural information to generate executable script for the final answer prediction. Extensive experiments demonstrate that the proposed design not only better enhance reasoning capabilities, but also seamlessly integrate with current models, leading to superior performance.
CAD: Confidence-Aware Adaptive Displacement for Semi-Supervised Medical Image Segmentation
Xiao, Wenbo, Xu, Zhihao, Liang, Guiping, Deng, Yangjun, Xiao, Yi
Semi-supervised medical image segmentation aims to leverage minimal expert annotations, yet remains confronted by challenges in maintaining high-quality consistency learning. Excessive perturbations can degrade alignment and hinder precise decision boundaries, especially in regions with uncertain predictions. In this paper, we introduce Confidence-Aware Adaptive Displacement (CAD), a framework that selectively identifies and replaces the largest low-confidence regions with high-confidence patches. By dynamically adjusting both the maximum allowable replacement size and the confidence threshold throughout training, CAD progressively refines the segmentation quality without overwhelming the learning process. Experimental results on public medical datasets demonstrate that CAD effectively enhances segmentation quality, establishing new state-of-the-art accuracy in this field. The source code will be released after the paper is published.
Unseen Horizons: Unveiling the Real Capability of LLM Code Generation Beyond the Familiar
Zhang, Yuanliang, Xie, Yifan, Li, Shanshan, Liu, Ke, Wang, Chong, Jia, Zhouyang, Huang, Xiangbing, Song, Jie, Luo, Chaopeng, Zheng, Zhizheng, Xu, Rulin, Liu, Yitong, Zheng, Si, Liao, Xiangke
Recently, large language models (LLMs) have shown strong potential in code generation tasks. However, there are still gaps before they can be fully applied in actual software development processes. Accurately assessing the code generation capabilities of large language models has become an important basis for evaluating and improving the models. Some existing works have constructed datasets to evaluate the capabilities of these models. However, the current evaluation process may encounter the illusion of "Specialist in Familiarity", primarily due to three gaps: the exposure of target code, case timeliness, and dependency availability. The fundamental reason for these gaps is that the code in current datasets may have been extensively exposed and exercised during the training phase, and due to the continuous training and development of LLM, their timeliness has been severely compromised. The key to solve the problem is to, as much as possible, evaluate the LLMs using code that they have not encountered before. Thus, the fundamental idea in this paper is to draw on the concept of code obfuscation, changing code at different levels while ensuring the functionality and output. To this end, we build a code-obfuscation based benchmark OBFUSEVAL. We first collect 1,354 raw cases from five real-world projects, including function description and code. Then we use three-level strategy (symbol, structure and semantic) to obfuscate descriptions, code and context dependencies. We evaluate four LLMs on OBFU- SEVAL and compared the effectiveness of different obfuscation strategy. We use official test suites of these projects to evaluate the generated code. The results show that after obfuscation, the average decrease ratio of test pass rate can up to 62.5%.